
Scalable NoSQL Provenance Logging
James R. Tapsell

Information Security Group, Smart Card and IoT Security Centre

Objectives

The project has the following objectives:
•Recording provenance event records from
NoSQL Databases in a scalable way

•Offer a way to record these provenance event
records for future access

•Store the entire event, so that at a later stage
full analysis can be performed

Introduction

Data small or big, has to be stored in a format
- traditionally it was stored as Structured Query
Language (SQL) supported format. This enabled
a quick access/retrieval of data. However, with the
advent of the need to store large scale data - the
interest in NoSQL got invigorated. Such type of
data-stores are not properly covered in terms of data
provenance - whether for building trustworthiness in
the data or building strong data-security. Therefore,
this project works to log audit events from
MongoDB databases, without using the enterprise
edition, and also writing the provenance event
records out over STDOUT as json records, allowing
then to be easily stored to files, or streamed over the
network.
This technique allows multiple servers to be stood
up, and the provenance event records from all of
them to be streamed to one central log recorder.

Figure 1: System diagram

Elements

The overall system is designed to be as lightweight as possible – imposing little performance penalty on the
database server. The system generates events that can be then be listened by event sequence profiler to
connect independent events to track the overall activities performed on the system. The system is made of
the following elements

•Application - An application causing database events to occur
•Mongo code - The MongoDB NoSQL database code
•Event translator - Converts in-memory MongoDB audit events into Provenance Event Records
•Watching code - Uses the streamed events

Important Result

MongoDB events can easily be recorded and streamed over the network to a waiting server, or recorded
locally to the server, and then collected at regular intervals.

Event records

Audit events were created with the following struc-
ture
• root

• client
• id - The client ID number
• isSysem - If the command occurs without a remote port

• eventType - The type of the event
• eventData - The raw event data

They were stored in this way to keep events similar,
preventing namespace collisions and making it easier
to quickly parse them.
The first revision used the BSONObj toString
method provided by MongoDB, but this caused
major slowdown as parsing it reduced the speed at
which events could be parsed.
A mix of a custom JSONiser and the BSONObj
jsonString was used to create RFC7159[1] compli-
ant JSON, which matches the schema provided on
http://www.json.org/[2]

Results

Figure 2: Speed comparison

As can be seen, once standards complieant JSON
was used, the speed of parsing the events for use
in a second system is almost as fast as the speed of
reading, tests were ran on a laptop with the following
specs:
•CPU : i7-6500U (4 cores, 1 thread per core)
•RAM : 12GB
•Disk : SSD
•OS : Ubuntu 16.04.3

Conclusion

It is quite possible to log provenance events, convert
them to provenance event records and stream them
out over the network, with minimal effect on the
speed of the database that the logger runs on.

Example Event Record

{
"client":{

"id": 1,
"isSystem": false

},
"eventType": "logCreateUser",
"eventData": {

"user": {
"username":"username",
"full": "username@admin",
"db": "admin"

},
"customData": null ,
"roles":[

"userAdminAnyDatabase@admin",
"dbAdminAnyDatabase@admin",
"readWriteAnyDatabase@admin"

]
}

}

References

[1] Google Inc for IETF T. Bray, Ed.
Rfc 7159.
https://tools.ietf.org/html/rfc7159.
Accessed: 2017-08-28.

[2] aa.
The json.org website.
http://www.json.org/.
Accessed: 2017-08-28.

Contact Information

•Web: www.jrtapsell.co.uk/urop-2017-bc
•Email: Papers@jrtapsell.co.uk

https://www.jrtapsell.co.uk/urop-2017-bc.html
mailto:Papers@jrtapsell.co.uk

